Module A: Keystone Biology Review

eukaryotic orga	nisms.	cteristics of life sha the following macromo		
-		_, and		
organelles		,		·
Have unive	ersal code or DNA	made of		
Respond t	o Stimuli			
Maintain k	nomeostasis			
Develop ai	nd Grow			
Reproduce	2			
Use Energ	y in the form of _			
Adapt or l	Evolve as a			
eukaryotic cells	•	ructures and their fo		
prokaryotes do N	Not. However, and	other difference betw	een these organisn	ns is size.
Prokaryotes are	not near as big as	eukaryotes. They are	e limited by their	
	to	ratio, because [.]	they do not have ac	dditional
membrane surfa	ce on their organe	lles, which can allow t	hem to achieve larg	ger sizes.
Eukaryotes also	go through the sp	ecialized nuclear divis	ion processes of	
and	, which prokary	otes do not have a nee	ed to undergo.	
Organelle	Structure	Function	In prokaryotes	In eukaryotes
Cell/Plasma Membrane				
Ribosome				

	Structure	Function	In prokary	In eukary
Mitochondria				
Chloroplast				
Endoplasmic Reticulum				
Golgi Apparatus				
Cell wall				
Nucleus				
Cytoskeleton				
Lysosomes				

BIO.A.2.1.1 Describe the unique properties of water and how these properties support life on Earth (e.g., freezing point, high specific heat, cohesion).

Water is inorganic, yet it is crucial to living organisms. Water helps to moderate temperatures on earth to help make it habitable because of its _____

_____. In addition, it also helps moderate temperatures in living things so that enzymes can function properly. Evaporative cooling helps to regular the internal temperature of many animals. All chemical reactions that occur in living things happen in water, which is a large component of the cytoplasm. Water is a liquid and solvent, so it can help to facilitate reactions at the speeds needed in living things by ensuring _______ come in contact with one another. In some of the reactions, water is even a _______ or ______. Many substances can enter and exit cells when

_____ in water, because is it known as the universal _____. Additionally, water _____ when frozen, which provides insulation for aquatic organisms.

Each of the properties above relate to the molecular structure of water molecules. Water molecules are composed of the elements _____ and

_____, _____ bonded together. Oxygen has a greater affinity for electrons, so they electrons are not ______ evenly. Instead the oxygen pulls the ______ electrons toward it more often than they are pulled toward hydrogen. This results in the molecule being ______ or having partial charges on it. The hydrogen atoms have partial _____ charges and the oxygen has a partial ______ charge.

Due to water's polarity, water molecules are attracted to each other due to the attraction of ______ charges. This is called ______. It also causes ______ action, which allows water to carry minerals up to even the tallest trees. We call the type of bonds between these molecules ______ bonds. They are much ______ than covalent bonds. However, they are still strong enough to allow water molecules to have large surface ______ and high specific ______. It is also deemed the ______ because it can surround many substances and dissolve them.

BIO.A.2.2.1 Explain how carbon is uniquely suited to form biological macromolecules.

Has _____ valence electrons so it forms ____ ____ bonds with itself

and other atoms by _____ electrons.

Forms _____, ____, and _____ bonds.

Forms _____, ____, and _____.

Therefore, it is able to form large macromolecules by bonding!

BIO.A.2.2.2 Describe how biological macromolecules form from monomers.

Biological macromolecule are _______ of building blocks called _______. Nucleic acids are made of _______. Proteins are made of _______. Lipids have no true monomers, but are composed of different smaller molecules. Starches or _______ are carbohydrates, which are composed of _______. The process that joins all of these monomers can be called polymerization reactions. This is just a specialized type of chemical reaction. In addition, the term _______ can be used. During these chemical reactions, water molecules are removed as the monomers are joined together to form the polymers or biological macromolecules. ______ participate in these synthesis reactions and allow them to occur at speeds that can sustain life. For example, _______ is an enzyme that is used in DNA synthesis, which is the special name for the dehydration synthesis reaction that produces DNA. The polymerization reaction that produces proteins is _______.

BIO.A.2.2.3 Compare the structure and function of carbohydrates, lipids, proteins, and nucleic acids in organisms.

	Structure (Atomic)	Structure (Molecular)	Function
Carbohydrates			
Lipids			
Proteins			
Nucleic Acids			

BIO.A.1.2.2 Describe and interpret relationships between structure and function at various levels of biological organization (i.e., organelles, cells, tissues, organs, organ systems, and multicellular organisms). BIO.A.2.3.1 Describe the role of an enzyme as a catalyst in regulating a specific biochemical reaction.

Enzymes are _____, which are made of amino acids. They are known

as biological ______ because they speed up chemical reactions in living

things. They bond with reactants or _____ at their _____

_____ and allow the activation energy needed for the reactions to be _____,

therefore increasing the speed of the reaction.

BIO.A.2.3.2 Explain how factors such as pH, temperature, and concentration levels can affect enzyme function.

BIO.A.3.2.2 Describe the role of ATP in biochemical reactions.

ATP or _______ is a modified _______, a phosphate group is added to _______ in order to form ATP. This is a high-energy bond, meaning it requires a lot of energy to make it. Consequently, a lot of energy is also given off when the bond is _______. Many reactions within a cell require energy and ATP is the source of this energy. The bond between the last phosphate group is _______, which releases energy the cell can use for other processes. _______ across the cell membrane, ______ to make new cells, DNA synthesis, and ______ or the formation of proteins all require energy in the form of ATP. BIO.A.3.1.1 Describe the fundamental roles of plastids (e.g., chloroplasts) and mitochondria in energy transformations.

BIO.A.3.2.1 Compare the basic transformation of energy during photosynthesis and cellular respiration.

BIO.A.4.2.1 Explain how organisms maintain homeostasis (e.g., thermoregulation, water regulation, oxygen regulation).

BIO.A.4.1.1 Describe how the structure of the plasma membrane allows it to function as a regulatory structure and/or protective barrier for a cell.

BIO.A.4.1.2 Compare the mechanisms that transport materials across the plasma membrane (i.e., passive transport—diffusion, osmosis, facilitated diffusion; and active transport—pumps, endocytosis, exocytosis).

BIO.A.4.1.3 Describe how membrane-bound cellular organelles (e.g., endoplasmic reticulum, Golgi apparatus) facilitate the transport of materials within a cell.

The membranes of these various organelles are linked, yet differ in structure in function. The directions to make ______, which are a diverse group of macromolecules that can perform a multitude of functions in the cell, are contained in the ______ of the cell. The instructions from the DNA are then copied into ______. It leaves the nucleus through ______ and then joins with proteins to form ______. These organelles can be freely in the cytoplasm or on the surface of the _______.

Proteins that are destined to leave the cell or end up in the cell membrane are made at ribosomes on the rough endoplasmic reticulum and are inserted into the membranes of the endoplasmic reticulum. Here they can be chemically _______. Sometimes carbohydrates are added to them to produce glycoproteins that may ultimately end up as part of the cell membrane. After proteins are modified in the endoplasmic reticulum, they are moved through transport _______ or tiny membrane bound structures. In the _______ apparatus or bodies, the protein may be modified further, _______, and then dispatched in a new transport _______ to their final destinations using microfilaments and tubules that are part of the _______ to their final destinations using microfilaments made to leave the cell, called secretory proteins are transported to the cell membrane. There the vesicles fuse with the cell membrane and deposit their contents outside of the cell.