Sexual Reproduction and Genetics

Section 2 Mendelian Genetics

Main Idea	Details
	Skim Section 2 of the chapter, and then write two questions that come to mind from reading the headings and illustration captions.
	1
	2

Review Vocabulary

Use your book or dictionary to define segregation.

segregation

New——' Vocabulary

Use terms in the left margin to complete the paragraph below.

allele

genetics

hybrid

law of independent assortment

law of segregation

_____ is the branch of biology that studies how traits are inherited. _____ offspring result from parents that have different forms of _____ for certain traits. Mendel's _____ states that every individual has two alleles of each gene and when gametes are produced, each gamete receives one of these alleles. Mendel's _____ states that genes for different traits are inherited independently of each other.

Compare and contrast each pair of terms by defining them and/or noting their differences.

dominant

genotype

heterozygous

homozygous

phenotype

recessive

dominant trait	recessive trait		
genotype	phenotype		
homozygous	heterozygous		

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Section 2 Mendelian Genetics (continued)

Main Idea .

Details

How Genetics Began

I found this information on page _____.

Infer why Mendel used cross-pollination to study inheritance.

The Inheritance of Traits

I found this information on page ———

Analyze Mendel's experiment with green-seed and yellow-seed pea plants by completing this summary paragraph.

Mendel used only	lines, which consistently			
produced the same trait in the c	offspring. To see how these traits			
are inherited, Mendel	When he			
crossed a green-seed plant with a yellow-seed plant, the F ₁				
offspring were perc	ent yellow and percent			
green. He allowed the F_1 plants	to to produce			
plants. The F ₂ plant	s were percent yellow			
and percent green.	Mendel concluded that each trait			
has two forms, called	Mendel called yellow seed			
color the for	m and green seed color the			
form of the	rait.			

Compare genotypes and phenotypes for pea plants.

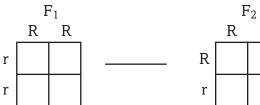
Genotype	Homozygous or Heterozygous	Phenotype		
	homozygous			
	heterozygous			
уу				

Section 2 Mendelian Genetics (continued)

⊂Main Idea ⊃_____

Details

I found this information on page ______.


Demonstrate the law of independent assortment by listing the 4 alleles that are produced when a pea plant with the genotype YyRr produces gametes.

- 1.
- 2. ____
- 3. ____
- 4. ____

Punnett Squares and Probability

I found this information on page ______.

Complete the Punnett squares for seed texture in the F_1 and F_2 generations. Round seeds (R) are dominant over wrinkled seeds (r). Write the expected genotypes and the probability for each.

R r R r

Identify the genotypes within the Punnett square showing the dihybrid cross of seed color and seed texture. The first row has been done for you. Write the expected phenotypic ratio.

	YR	уR	Yr	yr
YR	YYRR	YyRR	YYRr	YyRr
yR				
Yr				
yr				

Phenotypic ratio:

5		A 4	A 4			7
				_	\mathbf{v}	
	u	IVI		$\overline{}$		
~	_					

Discuss the effects of Mendel's two laws (segregation and independent assortment). Give an example.