10.2- Mendelian Genetics

How Genetics Began

genetics, the science of heredity.

heredity (or inheritance)- The passing of traits to the next generation

Gregor Mendel (father of genetics) studied inheritance in pea plants:

Carefully controlled his plants breeding and recorded results

Discovered patterns and ratios for how traits are passed down.

The Inheritance of Traits

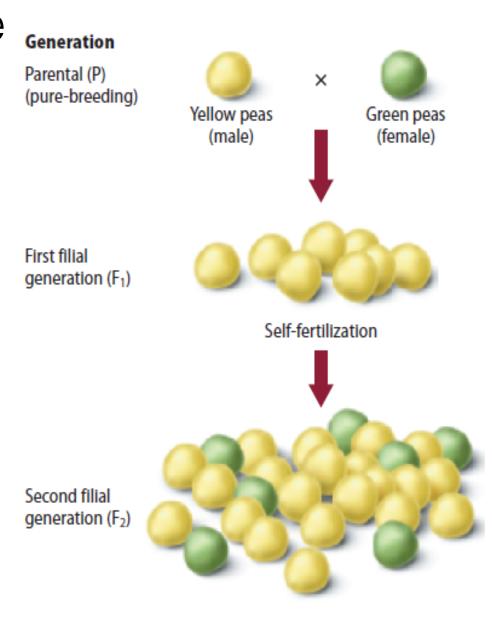
One trait Mendel noticed was seed color – some plants always produced green seeds, others always produced yellow seeds.

Mendel cross-bred the green and yellow seed plants.

Mendel called the green-seed and yellow-seed plants the **parent (P) generation**.

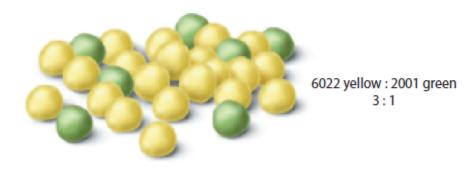
Generation

Parental (P) (pure-breeding)


×

The offspring of P cross are called the first filial (F₁) generation.

The offspring from the F_1 cross are called the **second filial** (F_2) generation.


In Mendel's peas, the green-seed trait disappeared in the F_1 generation, but reappeared in the F_2 generation.

The F₂ generation showed a 3:1 ratio of yellow: green seeds

Mendel studied 7 traits for over 8 years recording results from over 30,000 plants.

- Seed or pea color
- Flower color
- Seed pod color
- Seed shape or texture
- Seed pod shape
- Stem length
- Flower position

In all cases, Mendel found the F₂ generation plants showed a 3:1 ratio of traits.

Mendel's first conclusionthere must be two forms of each trait in the plants

An **allele** is one of two (or more) different forms of a gene.

The code for yellow seeds and the code for green seeds are different alleles for the same gene.

Mendel's second conclusion-

The principle of dominancesome alleles are dominant and others are recessive.

Dominant- always shows up, cannot be hidden, (capital letter)

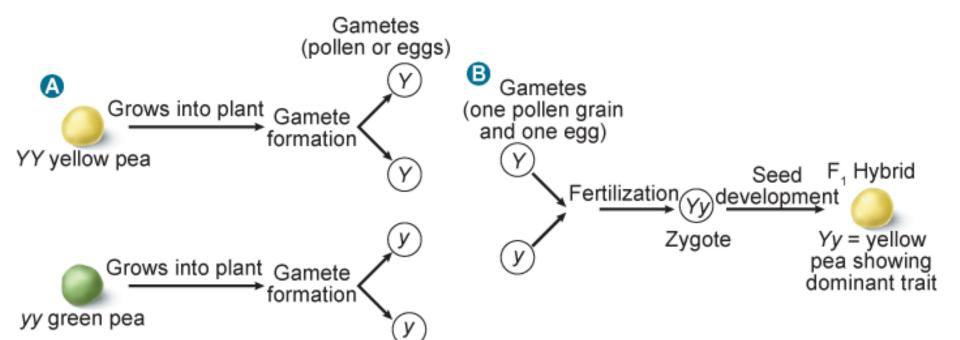
Recessive- can be hidden (lowercase letter)

Homozygous- means both alleles are the same. (ex. TT or tt)

Heterozygous- means the alleles are different. (ex. Tt) called hybrids

the dominant trait will hide the recessive trait

The appearance of an organism does not always indicate which pair of alleles it possesses.


Phenotype- physical characteristics or traits- what you can see (tall, short)

Genotype- genetic makeup, the alleles for the gene (TT, Tt, or tt)

The Inheritance of Traits

Mendel's law of segregationstates that the two alleles for each trait separate during meiosis.

Then, during fertilization, the two alleles for that trait unite.

Fertilization

Y = yellow-determining allele
y = green-determining allele

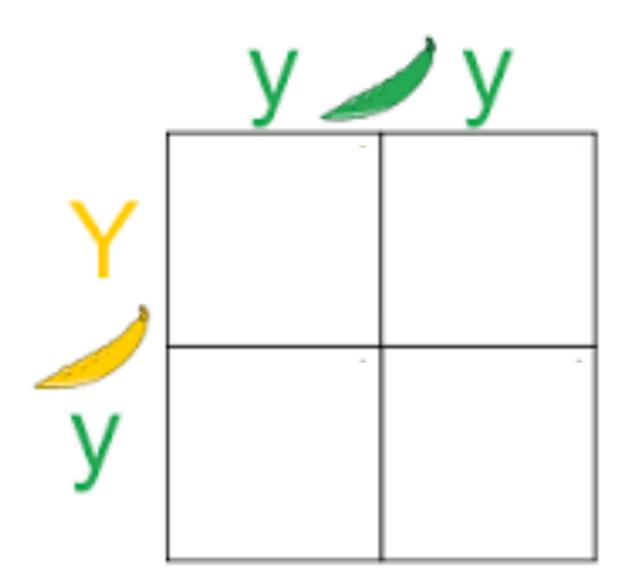
Gamete formation

Monohybrid cross- A cross that involves a single gene

Dihybrid cross- a cross that involves two or more genes at once

law of independent assortment-

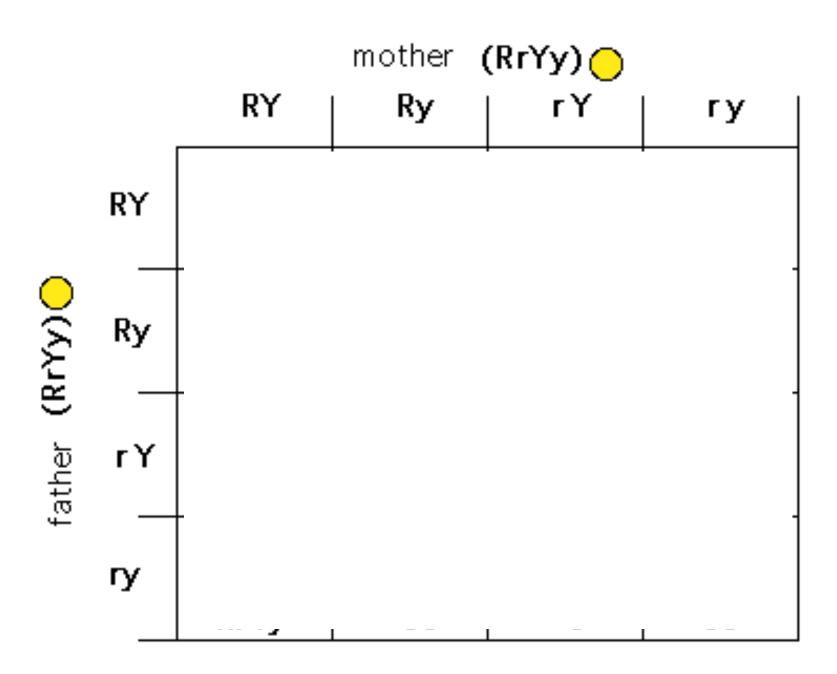
random distribution of alleles occurs during gamete formation


Genes on different chromosomes sort independently.

Each allele combination is equally likely to occur.

Alleles in → Gamete → Possible allele parental cell formation combinations in gametes $\frac{1}{4}$

Punnett Squares


- Punnett squares predict the possible offspring of a cross
- The number of squares is determined by the number of alleles from each parent.

dihybrid cross

- Four types of alleles from the male gametes and four types of alleles from the female gametes can be produced.
- The resulting phenotypic ratio is 9:3:3:1.

Copyright @ McGraw-Hill Education Mendelian Genetics

Type	Genotype	Phenotype	Number	Phenotypic Ratio
Parental	Y_R_	yellow round	315	9:16
Recombinar	nt <i>yyR</i> _	green round	108	3:16
Recombinar	nt <i>Y_rr</i>	yellow wrinkled	101	3:16
Parental	yyrr	green wrinkled	32	1:16

Copyright © McGraw-Hill Education

Mendelian Genetics

Probability

The inheritance of genes can be compared to the probability of flipping a coin. **The** data does not perfectly match, but it averages out to create a pattern.

Mendel's results were not exactly a 9:3:3:1 ratio, but the larger the number of offspring involved, the more likely it will match the results predicted by Punnett squares.