Sexual Reproduction and Genetics

Section 3 Gene Linkage and Polyploidy

←Main Idea

Details

Scan the headings, boldfaced words, pictures, figures, and captions in Section 3.

- Read all section titles.
- Read all boldfaced words.
- Look at all pictures and read the captions.
- Look at all figures.
- Read all captions.

Predict three things that you think will be discussed.

- 1.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define protein.

protein

New——— Vocabulary

Use your book or dictionary to define each term.

 $genetic\ recombination$

polyploidy

Name	Date

Section 3 Gene Linkage and Polyploidy (continued)

(Main Idea ⊃____

Details

Genetic Recombination

I found this information on page ______.

Calculate the number of chromosome combinations due to independent assortment by filling in the chart. Use the formula 2^n . The first one has been done for you.

Species	Chromosome Number (n)	Possible Combinations
Pea	7	$2^7 = 128$
Housefly	6	
Cabbage	9	
Fruit fly	4	
Frog	13	

Gene Linkage and Chromosome Maps

I found this information on page ______.

Summarize at least five pieces of information about genetic recombination by creating a concept map below.

nc
\simeq
ᆂ
(J)
Φ
=
_
ത
Ω
Sompanies
⊏
w-Hill Col
~
\circ
_
≔
т
_
>
2
ίO
ᆴ
ن
O
<
2
a division of The McGraw-
모
\vdash
\circ
_
_
0
.=
.0)
.2
-
ਰ
_
σ
_
≔
т
Ť
, H≓
É
۳
ᄺ
بِ
O
5
<
\geq
Ψ
8
206
COE
ncoe
lencoe
slencoe
Glencoe
Glencoe
© Glencoe
© Glencoe
it © Glencoe
ht © Glencoe
ght © Glencoe
right © Glencoe
vright © Glencoe
oyright © Glencoe
opyright © Glencoe
Sopyright @ Glencoe/McGraw

Section 3 Gene Linkage and Polyploidy (continued)

^Main Idea⊃____

⊘Details

I found this information on page _____

Complete the paragraph about gene linkage.

- chromosomes
- farther
- inheritedsequence

- crossing over
- individual genes linked

Genes close together on the same chromosome are _____.

Linked genes are usually ______ together. ______, not ______, follow Mendel's law of independent

assortment. Linked genes might become separated, as a result of

______. Crossing over is more likely to happen if

genes are _____ apart on a chromosome.

Analyze whether the gene linkage is an exception to, or an example of, Mendel's law of independent assortment. Use an example from your book.

Polyploidy

I found this information on page _____

Identify four species that show polyploidy.

- 1. 3.
- 2. 4.

SUMMARIZE

Compare and contrast gene linkage to polyploidy and how they do not follow all of Mendel's laws of inheritance.

Gene Linkage	Polyploidy