12.1- DNA: The genetic material

Discovery of the Genetic Material

Gregor Mendel's work with pea plants was rediscovered in the early 1900s and scientists began to look for the molecule involved in inheritance. They knew **chromosomes** carried the genetic information, but struggled to determine if **DNA** <u>or</u> protein was the source of genetic information.

Frederick Griffith- 1928

- First major experiment searching for the genetic material
- Involved bacteria S. pneumoniae and lab mice

Video clip

Frederick Griffith- 1928

S Strain Smooth	Mouse dies
R strain Rough	Mouse lives
S strain + Heat	Mouse lives
S Strain + Heat and R Strain	Mouse dies

Oswald Avery- 1944

- Broke apart heat-killed Smooth strains into DNA, proteins, and lipids
- Adding proteins or lipids to the rough strain had no effect on the mice.
- When DNA was added to the rough strain the mice died

 Avery concluded that when the S cells were killed, DNA was released and Rough bacteria took this DNA in and changed into Smooth

Alfred Hershey and Martha Chase- 1952

- Bacteriophage (DNA and Protein) attack bacteria cells
- Used radioactive labeling to mark DNA in one group and protein in the other
- Concluded that the DNA provided the genetic information

Group 1

Group 2

Most ³²P is in the bacterial cells.

Most ³⁵S is in the liquid with the viral proteins.

Chargaff

Analyzed the amount of A, G, T, and C in the DNA of various species

Chargaff's Data

	Base Composition (Mole Percent)			
Organism	A	т	G	С
Escherichia coli	26.0	23.9	24.9	25.2
Yeast	31.3	32.9	18.7	17.1
Herring	27.8	27.5	22.2	22.6
Rat	28.6	28.4	21.4	21.5
Human	30.9	29.4	19.9	19.8

Chargaff's rule: C = G and T = A

Search for the structure of DNA was lead by four scientists:

- Rosalind Franklin, British chemist
- Maurice Wilkins, British physicist
- Francis Crick, British physicist
- James Watson, American biologist

X-ray diffraction (Franklin)

Showed that DNA was a double helix, or twisted ladder shape.

Watson and Crick

 Built a model using Franklin and Chargaff's data for the width of the helix and the spacing of the bases

DNA structure

DNA's **double helix** = a twisted ladder.

- "Rails" of the ladder are deoxyribose and phosphate.
- "Steps" are the pairs of bases (cytosine-guanine or thymineadenine)

Nucleotides are the subunits of nucleic acids

- 5-carbon sugar
- Phosphate group
- Nitrogenous base

Orientation

DNA molecules have a direction

- The top is oriented 5' to 3'.
- The bottom runs in the **opposite** direction 3' to 5'.

Chromosome Structure

- In prokaryotes, DNA is in the cytoplasm, in a ring.
- In eukaryotes, DNA is in the nucleus in chromosomes.

Chromosome Structure

- To fit into a cell, DNA coils around proteins called histones.
- DNA + histones form a nucleosome

- Nucleosomes group together into chromatin fibers
- Chromatin fibers supercoil to form a chromosome

