6.3 WATER AND SOLUTIONS

polar molecules have an uneven distribution of charge

(meaning they have slightly positive and slightly negative areas)

hydrogen bond weak attraction between hydrogen and: fluorine, oxygen, or nitrogen

A hydrogen bond is a strong type of **van der Waals force**.

Hydrogen Bonding

Hydrogen bonds are not as strong as covalent or ionic bonds.

Hydrogen bonds can form in compounds other than H_2O_1

A **mixture** is two or more substances **physically** mixed together but not **chemically** combined

Each substance keeps its characteristics and properties.

IN A MIXTURE OF SALT AND IRON, THE IRON CAN BE REMOVED WITH A MAGNET.

TWO TYPES OF MIXTURES:

Solution

Suspension

Suspensions are heterogeneous mixtures where the particles don't dissolve ex: dirty water

A **colloid** is a suspension in which the particles do not settle out.

Solutions are homogeneous mixtures ex: saltwater

two parts of solutions: **Solute**- the thing being dissolved (ex: salt)

Solvent- the substance the solute dissolves into (ex: water)

Still a mixture: both the salt and the water keep their properties. (it still tastes salty right?)

Comparison of Solution and Suspension

SOLUTION

- Clear
- Homogeneous
- Solute particles do not settle to the bottom
- Solute particles of the solution pass through the filter paper

SUSPENSION

- Cloudy
- Heterogeneous
- Solid particles settle to the bottom when suspension left to stand
- Solute particles of the solution cannot pass through the filter paper and becomes residue on the filter paper

Water is called the "**universal solvent**" because many solutes dissolve in water because of its polarity

Acids release H⁺ when they are dissolved in water

Bases release hydroxide ions (OH⁻) when they are dissolved in water

(a) Acid Copyright 60 2010 Pearson Education, Inc.

(b) Base

NaCl Na⁺

CI-

(c) Salt

The amount of H+ or OH- determines the strength of an acid or base.

pH is the measure of H⁺ in a solution

A pH of 7 is "neutral" Acids have low pH values (down to 0) Bases have high pH values (up to14)

Examples	Battery acid	Stomach acid	Lemon juice, vinegar	Orange juice, cola	Tomatoes	Bananas Normal rainwater	Urine, healthy lake	Pure water Blood, tears	Seawater	Baking soda	Great Salt Lake	Household ammonia	Soapy water	Oven cleaner	Sodium hydraxide (NaOH)
pH Value	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	+	Increasingly acidic					Neutral			Increasingly basic					

Buffers are mixtures that can react with acids or bases to keep the pH from changing.

