8.2-Photosynthesis

Overview of Photosynthesis

Light energy is trapped and converted into chemical energy during photosynthesis.

$$6CO_2 + 6H_2O \xrightarrow{\text{light}} C_6H_{12}O_6 + 6O_2$$

Anabolic- building larger molecules

Chloroplast

Pigments- Light-absorbing colored molecules

Different pigments absorb different wavelengths of light.

chlorophyll- Most common pigment in plants

Chloroplasts contain

Thylakoids- flattened saclike membranes full of pigments
grana- stacks of thylakoids
Stroma- fluid filled space

Double membrane 1 thylakoid Stack of granum stroma

HTTPS://YOUTU.BE/1DN_ZDAZNOI

This is NOT an entertaining video clip, but it explains what you need to know

4 minutes

Photosynthesis occurs in two phases.

light-dependent phase- light energy is converted into chemical energy.

(light reactions- in the thylakoid)

Photosynthesis occurs in two phases.

light-independent phasechemical energy is used to synthesize glucose.

(Calvin cycle- in the stroma)

Phase One: Light Reactions

Light energy excites electrons in photosystem II

causes a water molecule to split –

1 electron into the electron transport system (ETC)

2 hydrogen ions (H⁺) into the thylakoid space

1 oxygen as waste

The activated electrons move from photosystem II to an acceptor molecule in the thylakoid membrane.

The electron acceptor molecule transfers the electrons along a series of electron carriers to photosystem I.

In the presence of light, photosystem I transfers electrons to a protein called ferrodoxin.

Ferrodoxin transfers the electrons to the carrier molecule **NADP+**, forming the energy storage molecule **NADPH**.

ATP is produced as protons flow through ATP synthase (chemiosmosis)

Remember: the water from photosystem II provided the protons

HTTPS://YOUTU.BE/WW33L0LD37I

TAYLOR SWIFT PARODY-PHOTOSYNTHESIS

Phase Two: Calvin cycle- energy is stored in organic molecules (such as glucose.)

Photosynthesis

The first step is **carbon fixation**.

6 CO₂ molecules combine with 6 5-carbon molecules

to form 12 3 carbon molecules (3-PGA)

second stepchemical energy from ATP & NADPH is transferred to the 3-PGA to form G3P

third step 2 G3P molecules leave the cycle to make glucose (and other organic compounds.)

rubisco (enzyme) converts the G3P into 5-carbon molecules ribulose 1, 5-bisphospates (RuBP).

These molecules combine with new CO_2 and continue the cycle.

Alternative Pathways

reduce water loss

C₄ plants- fix carbon into four-carbon compounds instead of three-carbon molecules

Also: different arrangement of cells within the leaves – separate CO_2 uptake from location of Calvin cycle

• Ex: sugar cane and corn

CAM plants Crassulacean acid metabolism (in desert plants.)

- Collect CO₂ at night and store it in organic compounds
- During the day, release CO₂ from organic compounds for the lightdependent cycle of photosynthesis